A UNITED STATES DEPARTMENT OF **COMMERCE** PUBLICATION

NOAA Technical Memorandum NWS WR80

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service

Estimation of Number of Days Above or Below Selected Temperatures

CLARENCE M. SAKAMOTO

Western Region

SALT LAKE CITY, UTAH

October 1972

NOAA TECHNICAL MEMORANDA

National Weather Service, Western Region Subseries

The National Weather Service (NWS) Western Region (WR) Subseries provides an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication. The series is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily to regional and local problems of interest mainly to personnel, and hence will not be widely distributed.

Papers I to 23 are in the former series, ESSA Technical Memoranda, Western Region Technical Memoranda (WRTM); papers 24 to 59 are in the former series, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 60, the papers are part of the series, NOAA Technical Memoranda NWS.

Papers I to 23, except for 5 (revised edition) and 10, are available from the National Weather Service Western Region, Scientific Services Division, P. O. Box 1188, Federal Building, 125 South State Street, Salt Lake City, Utah 84111. Papers 5 (revised edition), 10, and all others beginning with 24 are available from the National Technical Information Service, U.S. Department of Commerce, Silis Bidg., 5285 Port Royal Road, Springfield, Va. 22151. Price: \$3.00 paper copy; \$0.95 microfiche. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda

Some Notes on Probability Forecasting. Edward D. Diemer, September 1965. (Out of print.) Climatological Precipitation Probabilities. Compiled by Lucianne Miller, December 1965. Western Region Pre- and Post-FP-3 Program, December 1, 1965 to February 20, 1966. Edward D. Diemer, March WOTM I WRTM 2 WRTM 3 Use of Meteorological Satellite Data. March 1966. Station Descriptions of Local Effects on Synoptic Weather Patterns. Philip Williams, Jr., April 1966 (revised November 1967, October 1969). (PB-178000) Improvement of Forecast Wording and Format. C. L. Glenn, May 1966. Final Report on Precipitation Probability Test Programs. Edward D. Diemer, May 1966. Interpreting the RAREP. Herbert P. Benner, May 1966 (revised January 1967). (Out of print.) A Collection of Papers Related to the 1966 NMC Primitive-Equation Model. June 1966. Some Electrical Processes in the Atmosphere. J. Latham, June 1966. (Out of print.) (AD-479366) Some Electrical Processes in the Atmosphere. J. Latham, June 1966. A Comparison of Fog Incidence at Missoula, Montana, with Surrounding Locations. Richard A. Dightman, August 1966. (Out of print.) 1966. WRTM 4 WRTM 5 WRTM 6 WRTM 7 WRTM 8 WRTM 9 WRTM 10 WRTM 11 WRTM 12 A Collection of Technical Attachments on the 1966 NMC Primitive-Equation Model. Leonard W. Snellman, WRTM 13 August 1966. (Out of print.) Application of Net Radiometer Measurements to Short-Range Fog and Stratus Forecasting at Los Angeles. WRTM 14 Frederick Thomas, September 1966. The Use of the Mean as an Estimate of "Normal" Precipitation in an Arid Region. Paul C. Kangieser, WRTM 15 November 1966. Some Notes on Accilmatization in Man. Edited by Leonard W. Snellman, November 1966. WRTM 16 Some Notes on Acctimatization in Main. Eatred by Leonard W. Sheriman, Rovemon 1980. A Digitalized Summary of Radar Echoes Within 100 Miles of Sacramento, California. J. A. Youngberg and L. B. Overaas, December 1966. Limitations of Selected Meteorological Data. December 1966. A Grid Method for Estimating Precipitation Amounts by Using the WSR-57 Radar. R. Granger, December 1966. WRTM 17 WRTM 18 WRTM 19 (Out of print.) Transmitting Radar Echo Locations to Local Fire Contro! Agencies for Lightning Fire Detection. Robert R. Peterson, March 1967. (Out of print.) WRTM 20 An Objective Aid for Forecasting the End of East Winds in the Columbia Gorge, July through October. D. John WRTM 21 Coparanis, April 1967. WRTM 22 Derivation of Radar Horizons in Mountainous Terrain. Roger G. Pappas, April 1967. "K" Chart Applications to Thunderstorm Forecasts Over the Western United States. Richard E. Hambidge, May WRTM 23 1967. ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM) Historical and Climatological Study of Grinnell Glacier, Montana. Richard A. Dightman, July 1967. WBTM 24 (PB-178071) Verification of Operational Probability of Precipitation Forecasts, April 1966-March 1967. W. W. Dickey, WBTM 25 October 1967. (PB-176240) A Study of Winds in the Lake Mead Recreation Area. R. P. Auguils, January 1968. (PB-177830) WBTM 26 Objective Minimum Temperature Forecasting for Helena, Montana. D. E. Olsen, February 1968. (PB-177827) Weather Extremes. R. J. Schmidli, April 1968 (revised July 1968). (PB-178928) WBTM 27 WBTM 28 Small-Scale Analysis and Prediction. Philip Williams, Jr., May 1968. (PB-178425) Numerical Weather Prediction and Synoptic Meteorology. Capt. Thomas D. Murphy, U.S.A.F., May 1968. WBTM 29 WBTM 30 (AD-673365) WBTM 3,1 Precipitation Detection Probabilities by Salt Lake ARTC Radars. Robert K. Belesky, July 1968. (PB-179084) Probability Forecasting--A Problem Analysis with Reference to the Portland Fire Weather District. Harold S. Ayer, July 1968. (PB-179289) Objective Forecasting: Philip Williams, Jr., August 1968. (AD-680425) WBTM 32 WRTM 33 The WSR-57 Radar Program at Missoula, Montana. R. Granger, October 1968. (PB-180292) Joint ESSA/FAA ARTC Radar Weather Surveillance Program. Herbert P. Benner and DeVon B. Smith, December 1968 WBTM 34 WRTM 35 (revised June 1970). (AD-681857) Temperature Trends in Sacramento--Another Heat Island. Anthony D. Lentini, February 1969. (Out of print.) WBTM 36 (PB-183055) Disposal of Logging Residues Without Damage to Air Quality. Owen P. Cramer, March 1969. (PB-183057) Climate of Phoenix, Arizona. R. J. Schmidli, P. C. Kangieser, and R. S. Ingram. April 1969. (Out of print.) WBTM 37 WBTM 38 (PB-184295) Upper-Air Lows Over Northwestern United States. A. L. Jacobson, April 1969. (PB-184296) The Man-Machine Mix in Applied Weather Forecasting in the 1970s. L. W. Snellman, August 1969. (PB-185068) High Resolution Radiosonde Observations. W. S. Johnson, August 1969. (PB-185673) Analysis of the Southern California Santa Ana of January 15-17, 1966. Barry B. Aronovitch, August 1969. WBTM 39 WBTM 40 WBTM 41 WBTM 42 (PB-185670) Forecasting Maximum Temperatures at Helena, Montana. David E. Olsen, October 1969. (PB-185762) WRTM 43 Estimated Return Periods for Short-Duration Precipitation in Arizona. Paul C. Kangleser, October 1969. WRTM 44 (PB-187763) WBTM 45/1 Precipitation Probabilities in the Western Region Associated with Winter 500-mb Map Types. Richard A. Augulis, December 1969. (PB-188248)

U. S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE

NOAA Technical Memorandum NWSTM WR-80

ESTIMATION OF NUMBER OF DAYS ABOVE OR BELOW SELECTED TEMPERATURES

Clarence M. Sakamoto Weather Service Office Reno, Nevada

WESTERN REGION TECHNICAL MEMORANDUM NO. 80

SALT LAKE CITY, UTAH OCTOBER 1972

TABLE OF CONTENTS

		Page
List d	of Figures	iii-iv
Abstra	act	1
۱.	Introduction	1-2
11.	Procedure	2-3
111.	Data	3
1 V.	Results	3-6
۷.	Computer Analysis	6,
VI.	Concluding Remarks	6-7
V11.	Acknowledgment	7
VIII.	References	7

LIST OF FIGURES AND TABLES

Page

Figure I.	Sample Plot of Percent of Days in a Month When Maximum Temperature is Equal to or Greater Than 65°F Versus Mean Maximum Temperature (°F)	8
Figure 2.	Probit Transformation of the Normal Sigmoid Curve Showing the Relationship Between Mean Temperature and Percentage	8
Figure 3.	Sample Plot of Mean Temperature Versus Probit Transformation of Percentages	9
Figure 4.	Location of Stations in Idaho and Northwestern Montana Used to Develop Regression Model	10
Figure 5.	Location of Stations in Nevada Used to Develop Regression Model	10
Figure 6.	Location of Stations in Oregon Used to Develop Regression Model	11
Figure 7.	Location of Stations in Washington Used to Develop Regression Model	11
Figure 8.	Regression Line Relating Mean Monthly Maximum Temperature with Probit for Idaho and Northwestern Montana	12
Figure 9.	Regression Line Relating Mean Monthly Minimum Temperature with Probit for Idaho and Northwestern Montana	12
Figure 10.	Regression Line Relating Mean Monthly Maximum Temperature with Probit for Nevada	12
Figure II.	Regression Line Relating Mean Monthly Minimum Temperature with Probit for Nevada	12
Figure 12.	Regressi on Line Relating Mean Monthly Maximum Temperature with Probit for Oregon	13
Figure 13.	Regression Line Relating Mean Monthly Minimum Temperature with Probit for Oregon	13
Figure 14.	Regression Line Relating Mean Monthly Maximum Temperature with Probit for Washington	13

List of Figures and Tables (Continued)

		Page
Figure 15.	Regression Line Relating Mean Monthly Minimum Temperature with Probit for Washington	13
Figure 16.	Regression Line Relating Mean Monthly Maximum Temperature With Probit for All States Combined	14
Figure 17.	Regression Line Relating Mean Monthly Minimum Temperature with Probit for All States Combined	4
Figure 18.	Graphical Relationship Between Probit and Percent Days of Month and Number of Days	14
Figure 19.	Relationship Between Percentages and Probits	15
Table 1.	Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation Explained by the Model (R^2) for Estimating the Number of Days Above or Below Selected Temperatures in Idaho-Montana	16
Table 2.	Same as Table I, but for Nevada	17
Table 3.	Same as Table I, but for Oregon	18
Table 4.	Same as Table I, but for Washington	19
Table 5.	Same as Table I, but for Combined States	20
Table 6.	Independent Data Sites in Five States for Testing Prediction Models	21
Table 7.	Correlation Coefficient (R) and Sample Size (Months of Observed Versus Computed Percent Days Above or Below Selected Temperatures on Independent Samples for Combined Model and Individual State Model) 22
Table 8.	Variables for 95 Percent Confidence Interval on the Predicted Value from Individual Monthly Mean Maximu or Mean Minimum Temperatures for Idaho-Montana	m 23
Table 9.	Same as Table 8, but for Nevada	24
Table 10.	Same as Table 8, but for Oregon	25
Table II.	Same as Table 8, but for Washington	26
Table 12.	Same as Table 8, but for Combined States	29

ESTIMATION OF NUMBER OF DAYS ABOVE OR BELOW SELECTED TEMPERATURES

ABSTRACT

Regression equations were developed and graphed to provide an estimate of the number of days in a month the temperature was above or below selected temperature thresholds. These included: the mean number of days when the maximum temperature is equal to or greater than the following temperatures: 65°F, 70°F, 75°F, 80°F, 85°F, 90°F, 95°F, 100°F and when the maximum temperature was less than 32°F. In addition, this study included estimation of the mean number of days when the minimum temperature is equal to or less than the following levels: 0°F, 10°F, 20°F, and 32°F. The procedure involved regressing the probit transformation of the percent of days with the monthly mean maximum or mean minimum temperature. The developed equations were tested for the Columbia Basin states and Nevada. Results indicate that this procedure provides a reliable and rapid method for estimation and gives field climatologists a useful tool to meet users' requests.

I. INTRODUCTION

The "mean number of days" table found readily in monthly national climatological publications is usually associated with four threshold temperatures. These are: (a) the mean number of days when the maximum temperature equals or exceeds 90°F; (b) the mean number of days when the maximum temperature is 32°F or below; (c) the mean number of days when the minimum temperature is equal or less than 32°F; (d) the mean number of days when the minimum temperature is 0°F or less. For comparative purposes over the United States, these threshold temperatures may be valid and useful. In some instances, however, the table for a specific temperature, e.g., 90°F, may not be meaningful when this threshold is not often reached. Other low temperature levels may be of interest. Also, requests are sometimes received for a threshold level not readily tabulated.

Computer facilities have expedited the availability of this type of information, but analysis of daily observations over a long period is still time-consuming. Climatologists need a rapid means of estimating the mean number of days above or below a selected temperature level to meet users' requests and also to provide this information without resorting to analysis of voluminous data at a field station. This study provides a rapid and simple method for estimating the number of days above or below selected threshold temperatures. These temperatures include mean number of days when the maximum temperature is equal to or greater than the following temperatures: 65°F, 70°F, 75°F, 80°F, 85°F, 90°F, 95°F, 100°F and when the maximum temperature is less than 32°F. In addition, this study includes estimation of the mean number of days when the minimum temperature is equal to or less than the following levels: 0°F, 10°F, 20°F, and 32°F.

II. PROCEDURE

The initial procedure involved plotting the percent of days in the month with maximum temperature equal to or greater than the following temperatures: 65, 70, 75, 80, 85, 90, 95 or 100 degrees F, versus the monthly mean temperatures; percent days in the month when the maximum temperature is equal to or less than 32 degrees F, versus the mean temperature; and the percent of days with minimum temperature equal. to or less than the following temperature thresholds: 32, 20, 10 or 0 degrees F versus the mean minimum temperature. This was done for the Columbia Basin states and Nevada. Percentage of the days in a month was utilized to provide a homogenous scale for all months involved. An example of the plot of percent of days in month with maximum temperature equal to or greater than 65 degrees versus monthly mean maximum temperature is shown in Figure 1. The ID = 65 is the identification of the plot; NO = 356 represent the sample size, which is not plotted completely because some of the data points represent more than one datum point. The mean temperature (average of maximum and minimum) was also plotted to explore the relationship, but the resulting variation was greater than that of using only the maximum or minimum temperature. Therefore, the mean temperature was not used.

A study of the plots revealed that the curve is sigmoid and suggests a normal distribution. Analysis based directly on this distribution, would have been simple, but other factors need be considered. (a) There are temperature limits above or below which the number of days is zero or 100 percent of the days in a month. (b) These need to be eliminated to minimize a bias in a prediction line; data available for analysis in some instances may not be distributed to provide samples covering a sufficiently broad range. Therefore, the mean and variance, even though possible to calculate, may be meaningless.

It was hypothesized that if the range and distribution of samples were sufficient, the curve would follow a normal distribution, but because of (b) in the previous paragraph, another approach was necessary to obtain a prediction model. This approach involved the probit transformation of the original data, in this case, the percent of days in a month. Discussion of the probit transformation is detailed by Finney (2). An example of the data plot of the transformed data for the percent of days when the maximum temperature is greater than 65°F is given in Figure 2. Essentially, the probit transformation linearizes the normal sigmoid curve to obtain a straight line.(See Figure 3.)

-2-

In this study, the transformed data was regressed on temperature, using the least squares method. The result was a linear regression equation for each of the threshold temperatures. For some threshold levels, e.g., 90°F, 95°F, 100°F, 0°F, the same size was insufficient to provide a stable equation. Therefore, it was decided to combine the data for all states (Idaho, Oregon, Washington, Nevada, and parts of Montana) and run a combined model at each level in addition to a model for each level at each state.

III. DATA

Data for this study were extracted from the Climatological Handbook, Columbia Basin States, Volume I, Parts A and B (this handbook covered the states of Idaho, Oregon, Washington, and parts of Montana) (3, 4). For Nevada, data for the sites were determined by examining daily temperature observations (5). These states were selected to cover the spectrum of temperature range which has potential interest. Identical period data were not included in this analysis. Sites selected were based on length of record available which consisted of at least 29 years for the Columbia Basin states and at least 20 years for Nevada, as well as the general coverage of the states involved. Approximate location and name of the stations are shown in Figures 4, 5, 6, and 7.

IV. RESULTS

Tables I through 4 are the summary of the final regression equations based on the transformed data (percent of days) for the individual states. Note that the percent of variation explained by the model (R²) is generally excellent, except for the extreme threshold values, i.e., 95°F, 100°F, and 0°F. For the combined states model (Table 5), significant improvement is achieved. This results from combining data which cover a broader temperature range and, hence, data which cover a larger range of percent of days above or below a specified threshold. This suggests that for the states involved in this study, the combined model is a better predictor than the individual model for temperature levels 95°F, 100°F, and 0°F. For other thresholds, it is recommended that the individual model for each state be applied.

The models were subsequently tested on an independent sample for independent data sites (Table 6). The observed and computed values (probit transformation) were compared, using the correlation coefficient as a measure of their association. Again, the poorest association was obtained with the extreme threshold levels, 95°F, 100°F, and 0°F.

To expedite the analysis where computer facilities may not be available, the models were graphically charted. These are shown in Figures 8 through 17. Figures 8 and 9 are for Idaho and northwest Montana; Figures 10 and 11 for Nevada; Figures 12 and 13 for Oregon; Figures 14 and 15 for Washington, and Figures 16 and 17 are for the combined states.

These graphs are used to determine the probit value (dependent variable). For example, Figure 8 is used to determine the probit value for the number of days when the maximum temperature equals or exceeds selected temperatures at Idaho and northwest Montana. The mean monthly maximum temperature on the left ordinate is used as the independent variable to determine the probit value. For 32°F (number of days when the maximum temperature is less than 32°F), the ordinate scale to the right is used. Having determined that probit value, Figure 18 is used to retransform the probit values to either the precent of days (left ordinate scale) or the approximate number of days (right ordinate scale). For example, in Figure 8, if the mean monthly maximum temperature was 90°F and it was desired to determine the mean number of days when the maximum temperature was 85°F or higher, proceed right from the left ordinate at 90°F until the line '85' is intersected. From the point of intersection, proceed down until the value is found on the probit scale (abscissa). In this case, the value is 5.7. Enter 5.7 in Figure 18 on the abscissa and proceed upward until the curved line is intersected. The value for percent of month is 75 percent; for the number of days with a month having 30 days, it is 22.5 days.

Values for the number of days when the minimum temperature is below selected levels is similarly determined. For example, Figure 9 is used to find the probit value for Idaho and northwest Montana. The value is then entered in Figure 18 for the desired information.

The confidence interval for the estimate of a mean is calculated, in the case of the 95 percent confidence interval (C.I.), by:

 $C.I. = \overline{y} + bx \pm t$ $.05 \quad y \cdot x$ $\frac{1}{n} + \frac{x}{\Sigma x^2}$

1 2.4 M

were to the second

• •

where the term \bar{y} + bx is the estimated mean determined previously in the above example; $x = X - \bar{x}$ where \bar{x} is the mean and X is the observed independent variable (the observed mean maximum or mean minimum temperature); Σx^2 is the corrected sum of squares for X from which the model was derived; s is the standard deviation of the estimate y and t_{.05} is student's 't' for n-2 degrees of freedom. These values have been tabulated for each model (See Tables 8 through 12). Equation (1) is used in the case where a value of mean temperature is derived from analysis of several years. In some cases, interest may be on a particular year's data. To determine the confidence interval for this, the following is used:

C.1. =
$$\bar{y}$$
 + bx \pm + .05 s_{y.x} $\sqrt{1 + \frac{1}{n} + \frac{x^2}{\Sigma x^2}}$ (2)

(1)

For example, if the 90°F occurred this year, the estimated mean number of days determined earlier is 22.5 days (probit value of 5.7). From Table 8 for Idaho and northwest Montana, and for temperature level $85^{\circ}F$, t = 1.998; $s_{y.x} = .149$; n = 95; x = 77.6 and $\Sigma x^2 = 5118.6$. Therefore, the 95 percent confidence interval is:

C.I. = 5.7 ± 1.998(.149)
$$1 + \frac{1}{95} + \frac{(91-77.6)^2}{5118.6}$$
 (3)

or between 5.4 and 6.0 probit value. This corresponds to between 19 and 25 days for a month with 30 days. Other state values are shown in Tables 9 through 12.

Examination of the regression coefficients (slope) of the models suggest they may be the same. Two slopes may be compared with the student's t with $n_1 + n_2 - 4$ degrees of freedom. The test was conducted for threshold temperatures 65, 70, 75, 80, 85, and 90 F only. The test is:

where b_1 and b_2 are the regression coefficients for samples I and 2 respectively; Σx_1^2 and Σx_2^2 are the corrected sum of squares for the respective samples and s_p^2 is the pooled variance determined by:

$$s_{p}^{2} = \frac{\{\Sigma y_{1}^{2} - [(\Sigma x_{1} y_{1})^{2} / \Sigma x_{1}^{2}]\} + \{\Sigma y_{2}^{2} - [(\Sigma x_{2} y_{2})^{2} / \Sigma x_{2}^{2}]\}}{n_{1} - 2 + n_{2} - 2}$$
(5)

If t in equation (4) is less than the tabulated t with $n_1 + n_2 - 4$ degrees of freedom at the .05 level of significance, it is concluded that the slope of the two lines are the same.

This test was conducted for the largest and smallest regression coefficient value for each model from 65 degrees to 90 degrees F. The statistical results show that the slopes between the largest and smallest value were significantly different and, hence, could not be considered to have the same slope. Consequently, for the samples used in this study, it is recommended that the slope for each individual model be retained in the prediction equation. One possible explanation for the surprising statistical difference is the small

(4)

range dealt with for the probit values, which range from about 3.5 to 7.5 (see Figure 3).

V. COMPUTER ANALYSIS

Bliss (1) prepared a table of the relationship between percentages and probits. When plotted graphically, the relationship appears as in Figure 19. In the computer program, the curve in Figure 19 was divided into three sections: (a) 1.0 to 29.0 percnet, (b) from greater than 29.0 percent to 70 percent, (c) from greater than 70.0 percent to less than or equal to 99.9 percent. A model was developed between percentages and probits for each section of the curve. For curve (a), a logarithmic model was developed,

$$Y = 2.51573 + .547465 \ln X$$

where Y is the probit and X is the percentage. The coefficient of determination (R^2) was 98.61 percent which means that the data "explained" is .9861 of the variation of the data around the model. For curve (b), a linear model gave the best fit:

$$Y = 3.71121 + .0257758 X$$
(7)

(6)

 R^2 was .9998. For curve (c), the exponential models were attempted. The 4th polynomial yielded the best fit with R^2 = .9855.

 $Y = 1074.32 - 51.8832 X + .940684 X^2 - .00755276 X^3 + .0000226766 X^4 (8)$

Although relatively laborious to calculate by hand, computer-usage with these models posed no problem.

As indicated previously, all values of 0% or 100% of month were not included in the analysis of the regression model.

Each card (one card per month) included the mean maximum, mean minimum and mean temperature and the number of days for each of the threshold temperatures.

VI. CONCLUDING REMARKS

The procedure developed in this study provides a convenient method for estimating the number of days in a month with temperatures above or below selected temperature thresholds. The only variable necessary is the mean monthly maximum or the mean minimum temperature.

and the second second state of the second second

The procedure can be used to develop models for states other than those included in this study. It is suggested, however, that the combined model developed in this study can be utilized for gross value estimation at other locations.

The regression coefficients from 65°F to 90°F are similar in magnitude, and in some cases, identical. However, analysis of the data show that the slopes (regression coefficients) cannot statistically be considered identical to each other.

VII. ACKNOWLEDGMENT

Suggestions and comments offered by the Scientific Services Division and Regional Climatologist, Western Region Headquarters, are appreciated.

VIII. REFERENCES

- 1. BLISS, C. 1., "The Calculation of the Dosage-Mortality Curve", Annals of Applied Biology, Vol. 22, pp. 134-167, 1935.
- FINNEY, D. J., Probit Analysis, A Statistical Treatment of the Sigmoid Response Curve, Second Edition, Cambridge at the University Press, p. 318, 1966.
- 3. STERNES, G. L., Climatological Handbook, Columbia Basin States -Temperature, Vol. 1, Part A, June 1969.
- 4. STERNES, G. L., Climatological Handbook, Columbia Basin States -Temperature, Vol. 1, Part B, July 1969.
- 5. <u>Climatological Data Nevada</u>, Weather Bureau, U. S. Department of Commerce, 1941-1970.

8

.

9

FIGURE 6, LOCATION OF STATIONS IN OREGON USED TO DEVELOP REGRESSION MODEL.

FIGURE 7. LOCATION OF STATIONS IN WASHINGTON USED TO DEVELOP REGRESSION MODEL.

٠,

11

Table 1 . Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation explained by the Model (R^2) for Estimating the Number of Days above or below selected Temperatures in Idaho-Montana.

1.11

TEMP	ERATURE (F°)	INTERCEPT	REGRESSION COEFFICIENT	SAMPLE SIZE (Months)	R ²
MAX	65	-1.236	.096	130	•984
	70	-1.888	.100	128	- 984
	75	-2.777	.106	128	•984
	80	-3.512	•109	115	•986
	85	-4.131	.109	95	•988
	90	-4.295	.103	75	•903
	95.	-4.013	.091	46	.812
	100	-0.101	•039	· 15	•300
	321*	8.024	098	93	•951
	en anti- en anti- anti-		d d t		
MIN	32	8.692	118	180	.951
	20	6.842	104	128	•958
	10	5.928	097	96	.962
	0	5.084	081	80	.889

*number of days max temperature was 32°F or less

-16

TEMP	ERATURE (F°)	INTERCEPT	REGRESSION COEFFICIENT	SAMPLE SIZE (Months)	R ²
MAX	90	- 6.749	•133	44	•939
	95	- 7.846	.138	51	•970
	100	-11.323	.165	39	•925
	321*	7.163	075	34	.817
MIN	32	8.512	113	83	•953
•	0	5.143	094	23	•785

Table 2. Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation explained by the Model (R^2) for Estimating the Number of Days above or below selected Temperatures in Nevada.

*number of days max temperature was 32°F or less

-17-

Table 3 .	Summary of Intercept and Regression Coefficients of Probit Transforma-
	tion for Linear Model, Sample Size and Percent of Variation explained
	by the Model (R^2) for Estimating the Number of Days above or below
	selected Temperatures in Oregon.

TEMPERATURE	(F°) INTERCEPT	REGRESSION COEFFICIENT	SAMPLE SIZE (Months)	R ²
MAX 65	-1.979	.107	115	•956
70	-2,526	.108	112	•951
75	-3.093	.109	98	•958
80	-3.239	.105	90	•962
85	-3.420	.lQO	69	•964
90	-3.156	.090	56	.887
95	-2.249	.071	35	• 587
100	-0.543	.046	14	•563
321*	7.924	098	42	-812 X MIM
MIN 32	8.932	127	118	.951
20	7.160	116	63	•951
10	5•937	097	38	.878
0	4.762	065	23	.612

*number of days max temperature was 32°F or less

-18-

TEMP	ERATURE	(F°)	INTERCEPT	REGRESSION COEFFICIENT	SAMPLE SIZE (Months)	R ²
MAX	65		- 2.093	.109	111	•9 ⁴ 1
	70		- 2.491	.107	105	•964
	75		- 3.184	.109	102	.962
	80		- 3.553	.108	89	•962
	85		- 3.816	.104	72	.941
·	90		- 4.116	.102	50	•925
	95	а 1910 г. 1910 г.	- 4.419	.098	28	•925
	100		-11.507	.172	11	.867
	321*		8.325	109	47	.889
		· · · ·				
MIN	32		8.995	127	127	•949
	20		6.819	104	65	•935
	10		6.106	103	4ı	.828
	0		5.199	080	23	.669

Table 4 . Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation explained by the Model (R^2) for Estimating the Number of Days above or below selected Temperatures in Washington.

*number of days max temperature was 32°F or less

-19-

Table 5 . Summary of Intercept and Regression Coefficients of Probit Transforma-
Table 5 . Summary of Intercept and Regression Coefficients of Probit Transforma-
tion for Linear Model, Sample Size and Percent of Variation explained
by the Model (R^2) for Estimating the Number of Days above or below
selected Temperatures for Combined States.

21.

TEMPERATURE (F°)	INTERCEPT	REGRESSION COEFFICIENT	SAMPLE SIZE (Months)	R ²
MAX 65	-1.704	.103	356	•958
70	-2.319	.105	345	.962
75	-3.036	.109	328	•964
80	-3-495	.108	294	•968
85	-3.880	.106	236	•956
90	-4.505	.106	225	•910
95	-6.153	.118	160	•903
100	-7.415	.124	79	-821
321*	7.859	095	216	.884
т. 1 _{. т.}				en e
MIN 32	8.749	120	508	•951
20	6.891	106	256	•956
10	5.938	097	75	•939
0	5.011	077		.806

*number of days max temperature was 32°F or less

٠.

-20-

. · *

STATE	SITE	LATITUDE (NORTH)	LONGITUDE (WEST)	ELEVATION (FEET)	NO. YEARS RECORD
IDAHO	Ashton 1S Avery RS Grace Hailey RS Idaho Falls AP Oakley Sandpoint ES	44° 04' 47° 15' 42° 35' 43° 31' 43° 31' 42° 15' 48° 17'	111° 27' 115° 48' 111° 44' 114° 19' 112° 04' 113° 54' 116° 34'	5220 2492 5400 5328 4730 4191 2100	35 35 35 35 35 35 35 35
MONTANA	Missoula	46° 53'	114° 02'	3172	35
NEVADA	Battle Mountain Carson City Desert WL Range Fallon Lamoille Lovelock Mina Orovada Pioche	40° 39' 39° 09' 36° 26 39° 27' 40° 41' 40° 11' 38° 23' 41° 34' 37° 56'	116° 56' 119° 46' 115° 22' 118° 47' 115° 28' 118° 29' 118° 29' 118° 06' 117° 47' 114° 27'	4513 4651 2920 3965 6290 3977 4552 4310 6120	30 30 30 30 30 30 30 30 30
OREGON	Forest Grove Grants Pass Heppner Madras 2N Moro ES Parkdale Pendleton Prineville 2NW Prospect 2SW Union Warm Springs R	45° 32' 42° 26' 45° 21' 44° 40' 45° 29' 45° 35' 45° 41' 44° 19' 42° 44' 45° 13' 43° 35'	123° 06' 123° 19' 119° 33' 121° 09' 120° 43' 121° 30' 118° 51' 120° 52' 122° 31' 117° 05' 118° 13'	175 925 1950 2500 1858 1740 1489 2868 2482 2765 3352	35 35 35 35 35 35 35 35 35 35 35 35
WASHINGTON	Concrete Goldendale Kosmos Landsburg Palmer 3SE Rainier Longmire Snoqualmie Falls Vancouver Walla Walla 3W Wenatchee Wilbur Wind River Winthrop 1WSW	48° 32' 45° 49' 46° 30' 47° 23' 47° 18' 46° 45' 47° 33' 45° 38' 45° 03' 47° 25' 47° 45' 45° 48' 48° 28'	121° 45' 120° 50' 122° 39' 121° 58' 121° 50' 121° 49' 121° 51' 122° 41' 122° 41' 128° 24' 120° 19' 118° 42' 121° 56' 120° 11'	270 1635 775 535 895 2762 440 100 800 634 2163 1145 1755	35 35 32 35 27 35 35 35 35 35 35 35 36

Table 6. Independent Data Sites in Five States for Testing Prediction Models.

-21-

TEMPERATURE	COME	SINED STATE MONTE			-MONTANA MONTHS	R	OREGON MONT		EVADA MONTHS		INGTON IONTHS
		MONTE		R	MONTHS	K	MONL		MONTHS	K I	
MAX						· ·				·,	
65	•98	4 236		-989	54	•9	92 83			•978	99
70	•98	8 235		•986	56	•9	93 85		, -	•985	94
75	•98	8 225		•986	54	•9	94 80)		•987	91
80	•96	3 20	• • • • •	•988	40	•9	37 78			•982	86
85	•95	9 162	**	•981	34-	•9	90 _ 62			•923	66
90	•95	4 177		•947	23	•9'	73 53	•955	50	•953	51
95	-85	6 70		•790	12	.8	92 34			.952	24
100	•71	2 26	1		2	•71	+2 15			•787	9
32	•90	2 46		•948	40	.89)2 32	•694	30	•915	44
						1.1					• •
MIN											,
32	.96	1 363	• . •	•945	74	•97	7 103	•969	89	•967	97
20	•94	D 170		-910	53	•95	55 62		· ·	•940	55
10	- 88	2 103	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	.845	39	- 84	+2 34			.829	30
0	. 76	5 85		•787	35	. 62	26 19	•469	17	.882	14
0	• / 6	ر ه ر	• • • • • • • • • • • • • • • • • • •	•707	<i></i>	• Dz		•469	17	-002	<u></u>

Table 7. Correlation Coefficient (R) and Sample Size (Months) of Observed Versus Computed Percent Days Above or Below Selected Temperatures on Independent Samples for Combined Model and Individual State Model.

-22-

TEMPERATURE	t •05 (n-2 df)	STANDARD DEVIATION (SAMPLE s SIZE (n	MEAN) (x)	2 [*] Σx
MAX 65	1.980	.139	130	66.4	16358.5
70	1.980	•131	128	70.9	12958.8
75	1.980	.141	128	72.6	12426.2
80	1.981	.120	115	74.9	9265.7
85	1.998	.149	95	77.6	5118.6
90 	1.996	.213	75	80.1	2829.9
95	2.016	.202	46	83.6	932.5
100	2.160	.207	15	87.8	155.4
32	1.990	.138	93	38.3	3409.3
MIN 32	1.980	.261	180	29.1	16662.3
20	1.980	.168	128	21.3	7431.9
10	1.989	.119	96	18.2	3544•3
0	1.994	•159	80	16.7	- 2395•7

Table 8. Variables for 95 Percent Confidence Interval on the Predicted Value (Probit Transformation of the Percent of Days Above or Below Selected Temperatures) from Individual Monthly Mean Maximum or Mean Minimum Temperatures for Idaho-Montana.

a/95% C.I. = \overline{y} + bx ± t_{.05} s_{yx} $\sqrt{1 + \frac{1}{n} + \frac{x^2}{\Sigma x^2}}$ where x = X - \overline{x} ; \overline{x} is the mean and X the observed data.

* Corrected sum of squares

-23-

4		a/•
Table 9.	Variables for 95 Percent Conf:	idence Interval on the Predicted Value
	(Probit Transformation of the	Percent of Days Above or Below Selected
	Temperatures) from Individual	Monthly Mean Maximum or Mean Minimum
•	Temperatures for Nevada.	

TEMPERATURE	t •05 (n-ž df)		STANDARD DEVIATION	(s y.x)	SAMPLE SIZE (n)	MEAN (x)	2 Σx
MAR 00							• • • • • • • • • • • • • • • • • • • •
MAX 90	2.016		•245		44	85.4	2210.5
95	2.011		.181		51	90.9	2795-2
100	2.036		.283		39	94.5	1365.2
32	2.037	·	.191		34	44.8	925•7
•	1	•				•	
MIN 32	1.992		.263		83	30.4	8873.4
0	2.080		.202		23	17.4	356.5

a/95% C.I. = \overline{y} + bx ± t,05 syx $1 + \frac{1}{n} + \frac{x}{\Sigma x^2}$ and X the observed data. * Corrected sum of squares where x = X - x; x is the mean

Low A weeks with the

All of the grantee of the second of the

1.1

-24-

TEMPERATURE	t • 0 5 (n-ž df)	STANDARD DEVIATION (sy.x)	SAMPLE SIZE (n)	$\frac{\text{MEAN}}{(\bar{x})}$	2* Σx
MAX 65	1.982	•234	115	64.2	11770.3
70	1.983	.251	112	68.2	11474.2
75	1.988	.214	98	71.9	8433•3
80	1.991	.184	90	73.1	6839.1
85	1.998	.145	69	76.3	3771.5
90	2.004	-204	56	78.5	2197.9
95	2.031	.281	35	82.2	2875.5
100	2.179	.197	14	84.9	284.1
32	2.020	.221	42	42.8	883.8
		•			
MIN 32	1.981	.238	118	32.4	7845.0
20	1.999	.164	63	26.5	2330.6
10	2.025	.169	38	22.6	782.1
0	2.080	.197	23	20.0	302.3

<u>a/</u> Table10. Variables for 95 Percent Confidence Interval on the Predicted Value (Probit Transformation of the Percent of Days Above or Below Selected Temperatures) from Individual Monthly Mean Maximum or Mean Minimum Temperatures for Oregon.

 $\underline{a}/95\%$ C.I. = \overline{y} + bx ± t, 05 s yx $\sqrt{1 + \frac{1}{n} + \frac{x^2}{\Sigma x^2}}$ where $x = X - \overline{x}$; \overline{x} is the mean and X the observed data.

* Corrected sum of squares

-25-

TEMPERATURE		t •05 (n-2 df)		STANDARD DEVIATION	(s _{y.x})	SAMPLE SIZE (2 ² Σx	
MAX	65.	1.983	•	•263		111	66.1		10025.4	
lan si sa g	70	1.985	1	•183	•	105	68.4		8084.6	
۰ I	75	1.995		.191		102	70.8		8004.1	
	80	1.990		•174	•	89	72.6		5671.5	
. и	85	1.996		.189	· · ·	72	74.8		3652.8	
	90	2.013		.180	r.	50	77.9	X	1857.9	
÷	95	° 2.056		.142	• .	28	82.0		669.9	
1	00	2.262	.*	.106	a	11	87.6	÷	22.6	
•	32	2.014		.187	· •	47	40.0		1063.4	
		#			• •		·			
MIN	32	1.980	`	.223		127	33.1		7158.1	
	20	1.999		.147		65	27.2	1.41	1808.6	
··· · ·	10	2.025		.187		41	24.0		618.9	
	0	2.080		.186		23	21.6	÷.)	228.7	

Table 11. Variables for 95 Percent Confidence Interval on the Predicted Value (Probit Transformation of the Percent of Days Above or Below Selected Temperatures) from Individual Monthly Mean Maximum or Mean Minimum Temperatures for Washington.

<u>a</u>/

a/95% C.I. = \overline{y} + bx ± t_{.05} s_{yx} $\sqrt{1 + \frac{1}{n} + \frac{x^2}{\Sigma x^2}}$ where x = X - \overline{x} ; \overline{x} is the mean and X the observed data. * Corrected sum of squares

-26-

· ·	тe	mperatures 10	r Combined States.				
TEMPERATURE		t •05 (n-2 df)	STANDARD DEVIATION (s _{y.x})	SAMPLE SIZE (n)	MEAN (x)	2 Σ x	
XAM	65	1.960	•223	356	65.6	38470.2	
	70	1.960	•202	345	69.2	33085.4	
	75	1.960	•195	328	71.8	29063.5	
	80	1.960	.170	294	73.6	22086.3	
	85	1.960	.167	236	73.4	12866.9	
	90	1.960	•233	225	80.2	10689.9	
	95	1.970	.268	160	85.3	7545.6	
	100	1.993	•368	79	90.6	3097.4	
	32	1.960	.205	216	40.6	7595.5	
		• • •			· · · ·		
MIN	32	1.960	.252	508	31.1	42016.4	
	20	1.960	.164	256	24.1	13509.9	
	10	1.960	•147	175	20.5	6110.7	
	0	1.970	•193	149	18.1	3805.8	

Variables for 95 Percent Confidence Interval on the Predicted Value Table 12. (Probit Transformation of the Percent of Days Above or Below Selected Temperatures) from Individual Monthly Mean Maximum or Mean Minimum Temperatures for Combined States.

 $\underline{a}/95\%$ C.I. = $\overline{y} + bx \pm t_{0.5} s_{yx} \sqrt{1 + \frac{1}{n} + \frac{x^2}{\Sigma x^2}}$ where $x = X - \overline{x}$; \overline{x} is the mean and X the observed data.

* Corrected sum of squares

-27-

Western Region Technical Memoranda: (Continued)

1	No.	45/2	Precipitation Probabilities in the Western Region Associated with Spring 500-mb Map Types. Richard P. Augulis, January 1970. (PB-189434)
I	No.	45/3	Precipitation Probabilities in the Western Region Associated with Summer 500-mb Map Types.
1	No.	45/4	Richard P. Augulis, January 1970. (PB-189414) Precipitation Probabilities in the Western Region Associated with Fall 500-mb Map Types.
.	No.	46	Richard P. Augulis, January 1970. (PB-189435) Applications of the Net Radiometer to Short-Range Fog and Stratus Forecasting at Eugene,
. ·	No.	47	Oregon. L. Yee and E. Bates, December 1969. (PB-190476) Statistical Analysis as a Flood Routing Tool. Robert J. C. Burnash, December 1969.
ļ	No.	48	(PB-188744) Tsunami. Richard A. Augulis, February 1970. (PB-190157)
	No.	49	Predicting Precipitation Type. Robert J. C. Burnash and Floyd E. Hug, March 1970. (PB-190962)
	No.	50	Statistical Report on Aercallergens (Pollens and Molds) Fort Huachuca, Arizona, 1969. Wayne S. Johnson, April 1970. (PB-191743)
	No.	51	Western Region Sea State and Surf Forecaster's Manual. Gordon C. Shields and Gerald B. Burdwell, July 1970. (PB-193102)
	No.	52	Sacramento Weather Radar Climatology. R. G. Pappas and C. M. Veliquette, July 1970. (PB-193347)
	No.	53	Experimental Air Quality Forecasts in the Sacramento Valley. Norman S. Benes, August 1970. (PB-194128)
	No.	54	A Refinement of the Vorticity Field to Delineate Areas of Significant Precipitation. Barry B. Aronovitch, August 1970.
	No.	55	Application of the SSARR Model to a Basin Without Discharge Record. Vail Schermerhorn and Donald W. Kuehl, August 1970. (PB-194394)
	No.	56	Areal Coverage of Precipitation in Northwestern Utah. Philip Williams, Jr., and Werner J. Heck, September 1970. (PB-194389)
	No.	57	Preliminary Report on Agricultural Field Burning vs. Atmosphere Visibility in the Willamette Valley of Oregon. Earl M. Bates and David O. Chilcote, September 1970.
	No.	58	(PB-194710) Air Pollution by Jet Aircraft at Seattle-Tacoma Airport. Wallace R. Donaldson, October
	No.	59	1970. (COM-71-00017) Application of P.E. Model Forecast Parameters to Local-Area Forecasting. Leonard W. Snellman, October 1970. (COM-71-00016)
•			NOAA Technical Memoranda NWS
	No.	60	An Aid for Forecasting the Minimum Temperature at Medford, Oregon. Arthur W. Fritz,
	No.	61	October 1970. (COM-71-00120) Relationship of Wind Velocity and Stability to SO ₂ Concentrations at Salt Lake City, Utah.
	No.	62	Werner J. Heck, January 1971. (COM-71-00232) Forecasting the Catalina Eddy. Arthur L. Eichelberger, February 1971. (COM-71-00223)
•	No.	63	700-mb Warm Air Advection as a Forecasting Tool for Montana and Northern Idaho. Norris E. Woerner, February 1971. (COM-71-00349)
		64 65	Wind and Weather Regimes at Great Falls, Montana. Warren B. Price, March 1971. Climate of Sacramento, California. Wilbur E. Figgins, June 1971. (COM-71-00764)
		66	A Preliminary Report on Correlation of ARTCC Radar Echoes and Precipitation. Wilbur K. Hall, June 1971. (COM-71-00829)
	No.	67	Precipitation Detection Probabilities by Los Angeles ARTC Radars. Dennis E. Ronne, July 1971. (COM-71-00925)
	No. No.	68 69	A Survey of Marine Weather Requirements. Herbert P. Benner, July 1971. (COM-71-00889) National Weather Service Support to Soaring Activities. Ellis Burton, August 1971.
	No.		(COM-71-00956) Predicting Inversion Depths and Temperature Influences in the Helena Valley. David E.
	No.		Olsen, October 1971. (COM-71-01037) Western Region Synoptic Analysis-Problems and Methods. Philip Williams, Jr., February
			1972. (COM-72-10433)
		72	A Paradox Principle in the Prediction of Precipitation Type. Thomas J. Weitz, February 1972. (COM-72-10432)
		73	A Synoptic Climatology for Snowstorms in Northwestern Nevada. Bert L. Nelson, Paul M. Fransioli, and Clarence M. Sakamoto, February 1972. (COM-72-10338)
	No.	74	Thunderstorms and Hail Days Probabilities in Nevada. Clarence M. Sakamoto, April 1972. (COM-72-10554)
	No.	75	A Study of the Low Level Jet Stream of the San Joaquin Valley. Ronald A. Willis and Philip Williams, Jr., May 1972. (COM-72-10707)
	No.	76	Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Donald M. Gales, July 1972. (COM-72-11140)
,	No.	77	A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., July 1972. (COM-72-11136)
	No.	78	Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Vectors. Earl T. Riddiough, July 1972. (COM-72-11146)
	No	79	Climate of Stockton, California. Robert C. Nelson, July 1972. (COM-72-10920)