NOAA Technical Memorandum NWS WR8O

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Weather Service

Estimation of Number of Days Above or Below Selected Temperatures

CLARENCE M. SAKAMOTO

SALT LAKE CITY, UTAH

October 1972

NOAA TECENICAL MEMORANDA

National Weather Service, Western Region Subserles
The National Weather Service (NWS) Western Region (WR) Subserles provides an informal medium for the documentation and quick dissemination of results not approprlate, or not yet ready, for formal publication. The series is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigatlons devoted primarily to regional and local problems of interest mainly to personnel, and hence will not be widely distributed.

Papers 1 to 23 are in the former series, ESSA Technlcal Memoranda, Western Region Technical Memoranda (WRTM); papers 24 to 59 are in the former serles,.ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM) Beginning with 60, the papers are part of the serles, NOAA Technical Memoranda NWS.

Papers 1 to 23, except for 5 (revised edition) and 10, are avallable from the National Weather Service Western Reglon, Scientific Services-Divislon, P. O. Box lll88, Federal Building, 125 South State Street, Salt Lake City, Utah 84lll. Papers. 5 (revised edition), 10, and all others beginning with 24 are avallable from the National Technical information Service, U:S. Department of Commerce, Sills Bidg., 5285 Port Royal Road, Springfield, Va. 22!51. Price: $\$ 3.00$ paper copy; $\$ 0.95$ microfiche. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda

WRTM 1
WRTM 2
WRTM 3
Some Notes on Probability Forecasting. Edward D. Diemer, September 1965. (Out of print.) Climatological Precipitation Probabilities. Compiled by Lucianne Miller, December 1965.

WRTM 4 Use of Meteorological Satellite Data. March 1966.
WRTM 5 . Station Descriptions of Loca! Effects on Synoptic Weather Patterns. Philip Williams, Jr., April I966 (revised November 1967, October 1969). (PB-178000)
WRTM 6 Improvement of Forecast Wording and Format. C. L. Glenn, May 1966.
WRTM 7 Final Report on Precipitation Probability Test Programs. Edward D. Diemer, May 1966
WRTM 8 Interpreting the RAREP. Herbert P. Benner, May 1966 (revised January 1967). (Out of print.)
WRTM $9 \quad A$ Collection of Papers Related to the 1966 NMC Primitive-Equation Model. June 1966.
WRTM 10 Sonic Boom. Loren Crow (6 th Weather Wing, USAF, Pamphlet), June l966. (Out of print.) (AD-479366)
WRTM li. Some Electrical Processes in the Atmosphere. J. Latham, June 1966.
WRTM 12 A Comparlson of Fog Incidence at Missoula, Montana, with Surrounding Locations. Richard A. Dightman, August 1966. (Out of print.)
WRTM 13 A Collection of Technical Attachments on the 1966 NMC Primitive-Equation Model. Leonard. W. Snel Iman, August 1966. (Out of print.)
Application of Net Radlometer Measurements to Short-Range Fog and Stratus Forecasting at Los Angeles. Frederlck Thomas, September 1966.
WRTM 15 The Use of the Mean as an Estimate of "Normal" precipitation in an Arid Region. Paul C. Kangieser, November 1966.
WRTM 16 Some Notes on Accilmatization in Man. Edited by Leoriard W. Snellman, November I966.
WRTM 17 A Digitalized Summary of Radar Echoes Within 100 Miles of Sacramento, California. J. A. Youngberg and L. B. Overaas, December 1966.

WRTM 18 . Limitations of Selected Meteorologica! Data. December. I966.
WRTM 19 A Grid Method for Estimating Precipitation Amounts by Using the WSR-57 Radar. R. Granger, December I966. (Out of print.)
WRTM 20 Transmitting Radar Echo Locations to Local Fire Control Agencies for Lightning fire Detection. Robert R. Peterson, March 1967. (Out of print:)
WRTM 21 An Objective Ald for Forecasting the End of East Winds in the Columbla Gorge, July through October. D. John Coparanis", April 1967.
WRTM. 22 Derlvation. of Radar Horizons in Mountainous Terrain. Roger G. Pappas, Aprll 1967.
WRTM 23 "K" Chart Applications to Thunderstorm Forecasts Over the Western United States. Richard E. Hambidge, May 1967.

WBTM 24 Historical and Climatological Study of Grinnell Glacier, Montana. Rlchard A. Dightman, July 1967. (PB-|78071)
WBTM 25 Verification of Operational Probability of Precipitation Forecasts, April 1966-March 1967. W. W. Dickey, October 1967. (PB-176240)
WBTM 25 A Study of Winds in the Lake Mead Recreation Area. R. P. Auguilis, January 1968. (PB-177830)
WBTM 27 Objective MInimum Temperature Forecasting for Helena, Montana. D. E. Olsen, February 1968. (PB-177827)
WBTM 28 Weather Extremes. R. J. Schmidit, April 1968 (revised July 1968). (PB-178928)
WBTM 29 . Small-Scale Analysls and Prediction. Philip Williams, Jr., May 1968. (PB-l78425)
WBTM 30 Numerlcal Weather Prediction and Synoptic Meteorology. Capt. Thomas D. Murphy, U.S.A.F., May 1968. (AD-673365)
WBTM 3.1 Precipitation Detection Probabilities by Salt Lake ARTC Radars. Robert K. Belesky, July l968. (PB -179084)
WBTM 32 Probability Forecasting-A Problem Analysis with Reference to the Portland Fire Weather District. Harold S. Ayer, July 1968. (PB-|79289)
WBTM 33 Objective Forecasting: Philip Williams, Jr., August l968. (AD-680425)
WBTM 34 The WSR-57 Radar Program at Missoula, Montana. R. Granger, October l968. (PB-180292)
WBTM 35 Joint ESSA/FAA ARTC Radar Weather Survelllance Program. Herbert P. Benner and DeVon B. Smith, December I968 (revised June 1970). (AD-681857)
WBTM 36 Temperature Trends in Sacramento--Another Heat Island. Anthony D. Lentini, February 1969. (Out of print.) (PB-183055)
WBTM 37 Disposal of Logging Residues Without Damage to Air Quality. Owen P. Cramer, March 1969. (PB-183057)
WBTM 38 Climate of Phoenix, Arizona. R. J. Schmidil, P. C. Kangieser, and R. S. Ingram. April I969. (Out of print.) (PB -184295)
WBTM 39 Upper-AIr Lows Over Northwestern United States. A. L. Jacobson, April I969. (PB-184296)
WBTM 40 The Man-Machine Mix In Applled Weather Forecasting in the 1970s. L. W. Snellman, August I969. (PB-185068)
WBTM 41 High Resolution Radiosonde Observations. W. S. Johnson, August 1969. (PB-185673)
WBTM 42 Analysis of the Southern Californla Santa Ana of January 15-17, 1966. Barry B. Aronovitch, August I969. (PB-185670)
WBTM 43 Forecasting Maximum Temperatures at Helena, Montana. David E. Olsen, October 1969. (PB-i85762)
WBTM 44 Estimated Return Periods for ShortaDuration Precipitation in Arizona. Paul C. Kangieṣer, October l969. (PB-187763)
WBTM 45/I Precipitation Probabilitles in the Western Region Associated with Winter 500-mb Map Types. Richard A. Augulis, December 1969. ($\mathrm{PB}-188248$)
U. S. DEPARTMENT OF COMMERCE

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE

NOAA Technical Memorandum NWSTM WR-80

ESTIMATION OF NUMBER OF DAYS ABOVE OR BELOW SELECTED TEMPERATURES

Clarence M. Sakamoto Weather Service Office Reno, Nevada

Page
List of Figures $i i i-i v$
Abstract 1
I. Introduction $1-2$
11. Procedure $2-3$
111. Data 3
IV. Results 3-6
V. Computer Analysis 6.
VI. Concluding Remarks $6-7$
VII. Acknowledgment 7
VIII. References 7
Page
Figure 1. Sample Plot of Percent of Days in a Month When Maximum Temperature is Equal to or Greater Than $65^{\circ} \mathrm{F}$ Versus Mean Maximum Temperature (${ }^{\circ} \mathrm{F}$) 8
Figure 2. Probit Transformation of the Normal Sigmoid Curve Showing the Relationship Between Mean Temperature and Percentage 8
Figure 3. Sample Plot of Mean Temperature Versus Probit Transformation of Percentages
Figure 4. Location of Stations in Idaho and Northwestern Montana Used to Develop Regression Model 10
Figure 5. Location of Stations in Nevada Used to Develop Regression Model 10
Figure 6. Location of Stations in Oregon Used to Develop Regression Model 11
Figure 7. Location of Stations in Washington Used to Develop Regression Model 11
Figure 8. Regression Line Relating Mean Monthly Maximum Temperature with Probit for Idaho and Northwestern Montana 12
Figure 9. Regression Line Relating Mean Monthly Minimum Temperature with Probit for Idaho and Northwestern Montana 12
Figure 10. Regression Line Relating Mean Monthly Maximum Temperature with Probit for Nevada 12
Figure 11. Regression Line Relating Mean Monthly Minimum Temperature with Probit for Nevada 12
Figure 12. Regression Line Relating Mean Monthly Maximum Temperature with Probit for Oregon 13
Figure 13. Regression Line Relating Mean Monthly Minimum Temperature with Probit for Oregon 13
Figure 14. Regression Line Relating Mean Monthly Maximum Temperature with Probit for Washington 13
Figure 15. Regression Line Relating Mean Monthly Minimum Temperature with Probit for Washington 13
Figure 16. Regression Line Relating Mean Monthly Maximum Temperature With Probit for All States Combined 14
Figure 17. Regression Line Relating Mean Monthly Minimum Temperature with Probit for All States Combined 14
Figure 18. Graphical Relationship Between Probit and Percent Days of Month and Number of Days 14
Figure 19. Relationship Between Percentages and Probits 15
Table I. Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation Explained by the Model (R^{2}) for Estimating the Number of Days Above or Below Selected Temperatures in Idaho-Montana 16
Table 2. Same as Table 1, but for Nevada 17
Table 3. Same as Table 1, but for Oregon 18
Table 4. Same as Table I, but for Washington 19
Table 5. Same as Table I, but for Combined States 20
Table 6. Independent Data Sites in Five States for Testing Prediction Models 21
Table 7. Correlation Coefficient (R) and Sample Size (Months) of Observed Versus Computed Percent Days Above or Below Selected Temperatures on Independent Samples for Combined Model and Individual State Model 22
Table 8. Variables for 95 Percent Confidence Interval on the Predicted Value from Individual Monthly Mean Maximum or Mean Minimum Temperatures for Idaho-Montana 23
Table 9. Same as Table 8, but for Nevada 24
Table 10. Same as Table 8, but for Oregon 25
Table 11. Same as Table 8, but for Washington 26
Table 12. Same as Table 8, but for Combined States 29

ESTIMATION OF NUMBER OF DAYS ABOVE OR BELOW SELECTED TEMPERATURES

Abstract

Regression equations were developed and graphed to provide an estimate of the number of days in a month the temperature was above or below selected temperature thresholds. These included: the mean number of days when the maximum temperature is equal to or greater than the following temperatures: $65^{\circ} \mathrm{F}, 70^{\circ} \mathrm{F}, 75^{\circ} \mathrm{F}, 80^{\circ} \mathrm{F}, 85^{\circ} \mathrm{F}, 90^{\circ} \mathrm{F}$, $95^{\circ} \mathrm{F}, 100^{\circ} \mathrm{F}$ and when the maximum temperature was less than $32^{\circ} \mathrm{F}$. In addition, this study included estimation of the mean number of days when the minimum temperature is equal to or less than the following levels: $0^{\circ} \mathrm{F}, 10^{\circ} \mathrm{F}, 20^{\circ} \mathrm{F}$, and $32^{\circ} \mathrm{F}$. The procedure involved regressing the probit transformation of the percent of days with the monthly mean maximum or mean minimum temperature. The developed equations were tested for the Columbia Basin states and Nevada. Results indicate that this procedure provides a reliable and rapid method for estimation and gives field climatologists a useful tool to meet users' requests.

I. INTRODUCTION

The "mean number of days" table found readily in monthly national climatological publications is usually associated with four threshold temperatures. These are: (a) the mean number of days when the maximum temperature equals or exceeds $90^{\circ} \mathrm{F}$; (b) the mean number of days when the maximum temperature is $32^{\circ} \mathrm{F}$ or below; (c) the mean number of days when the minimum temperature is equal or less than $32^{\circ} \mathrm{F}$; (d) the mean number of days when the minimum temperature is $0^{\circ} \mathrm{F}$ or less. For comparative purposes over the United States, these threshold temperatures may be valid and useful. In some instances, however, the table for a specific temperature, e.g., $90^{\circ} \mathrm{F}$, may not be meaningful when this threshold is not often reached. Other low temperature levels may be of interest. Also, requests are sometimes received for a threshold level not readily tabulated.

Computer facilities have expedited the availability of this type of information, but analysis of daily observations over a long period is still time-consuming. Climatologists need a rapid means of estimating the mean number of days above or below a selected temperature level to meet users' requests and also to provide this information without resorting to analysis of voluminous data at a field station. This study provides a rapid and simple method for estimating
the number of days above or below selected threshold temperatures. These temperatures include mean number of days when the maximum temperature is equal to or greater than the following temperatures: $65^{\circ} \mathrm{F}, 70^{\circ} \mathrm{F}, 75^{\circ} \mathrm{F}, 80^{\circ} \mathrm{F}, 85^{\circ} \mathrm{F}, 90^{\circ} \mathrm{F}, 95^{\circ} \mathrm{F}, 100^{\circ} \mathrm{F}$ and when the maximum temperature is less than $32^{\circ} \mathrm{F}$. In addition, this study includes estimation of the mean number of days when the minimum temperature is equal to or less than the following levels: $0^{\circ} \mathrm{F}$, $10^{\circ} \mathrm{F}, 20^{\circ} \mathrm{F}$, and $32^{\circ} \mathrm{F}$.

11. PROCEDURE

The initial procedure involved plotting the percent of days in the month with maximum temperature equal to or greater than the following temperatures: $65,70,75,80,85,90,95$ or 100 degrees F, versus the monthly mean temperatures; percent days in the month when the maximum femperature is equal to or less than 32 degrees F, versus the mean temperature; and the percent of days with minimum temperature equal to or less than the following temperature thresholds: 32, 20, 10 or 0 degrees F versus the mean minimum temperature. This was done for the Columbia Basin states and Nevada. Percentage of the days in a month was utilized to provide a homogenous scale for all months involved. An example of the plot of percent of days in month with maximum temperature equal to or greater than 65 degrees versus monthly mean maximum temperature is shown in Figure 1. The $I D=65$ is the identification of the plot; $N O=356$ represent the sample size, which is not plotted completely because some of the data points represent more than one datum point. The mean temperature laverage of maximum and minimum) was also plotted to explore the relationship, but the resulting variation was greater than that of using only the maximum or minimum temperature. Therefore, the mean temperature was not used.

A study of the plots revealed that the curve is sigmoid and suggests a normal distribution. Analysis based directly on this distribution, would have been simple, but other factors need be considered. (a) There are temperature limits above or below which the number of days is zero or 100 percent of the days in a month. (b) These need to be eliminated to minimize a bias in a prediction line; data avallable for analysis in some instances may not be distributed to provide samples covering a sufficiently broad range. Therefore, the mean and variance, even though possible to calculate, may be meaningless.

It was hypothesized that if the range and distribution of samples were sufficient, the curve would follow a normal distribution, but because of (b) in the previous paragraph, another approach was necessary to obtain a prediction model. This approach involved the probit transformation of the original data, in this case, the percent of days in a month. Discussion of the probit transformation is detalled by Finney (2). An example of the data plot, of the transformed data for the percent of days when the maximum temperature is greater than $65^{\circ} \mathrm{F}$ is given in Figure 2. Essentially, the probit transformation linearizes the normal sigmold curve to obtain a straight line.(See Figure 3.)

In this study, the transformed data was regressed on temperature, using the least squares method. The result was a linear regression equation for each of the threshold temperatures. For some threshold levels, e.g., $90^{\circ} \mathrm{F}, 95^{\circ} \mathrm{F}, 100^{\circ} \mathrm{F}, 0^{\circ} \mathrm{F}$, the same size was insufficient to provide a stable equation. Therefore, it was decided to combine the data for all states (ldaho, Oregon, Washington, Nevada, and parts of Moritana) and run a combined model at each level in addition to a model for each level at each state.

\|\|. DATA

Data for this study were extracted from the Climatological Handbook, Columbia Basin States, Volume I, Parts A and B (this handbook covered the states of Idaho, Oregon, Washington, and parts of Montana) (3, 4). For Nevada, data for the sites were determined by examining daily temperature observations (5). These states were selected to cover the spectrum of temperature range which has potential interest. Identical period data were not included in this analysis. Sites selected were based on length of record available which consisted of at least 29 years for the Columbia Basin states and at least 20 years for Nevada, as well as the general coverage of the states involved. Approximate location and name of the stations are shown in Figures 4, 5, 6, and 7.

IV. RESULTS

Tables 1 through 4 are the summary of the final regression equations based on the transformed data (percent of days) for the individua! states. Note that the percent of variation explained by the model $\left(R^{2}\right)$ is generally excellent, except for the extreme threshold values, i.e., $95^{\circ} \mathrm{F}, 100^{\circ} \mathrm{F}$, and $0^{\circ} \mathrm{F}$. For the combined states model (Table 5), significant improvement is achieved. This results from combining data which cover a broader temperature range and, hence, data which cover a larger range of percent of days above or below a specified threshold. This suggests that for the states involved in this study, the combined model is a better predictor than the individual model for temperature levels $95^{\circ} \mathrm{F}, 100^{\circ} \mathrm{F}$, and $0^{\circ} \mathrm{F}$. For other thresholds, it is recommended that the individual model for each state be applied.

The models were subsequently tested on an independent sample for independent data sites (Table 6). The observed and computed values (probit transformation) were compared, using the correlation coefficient as a measure of their association. Again, the poorest association was obtained with the extreme threshold levels, $95^{\circ} \mathrm{F}, 100^{\circ} \mathrm{F}$, and $0^{\circ} \mathrm{F}$.

To expedite the analysis where computer facilities may not be available, the models were graphically charted. These are shown in Figures 8 through 17. Figures 8 and 9 are for Idaho and northwest Montana; Figures 10 and 11 for Nevada; Figures 12 and 13 for Oregon; Figures 14 and 15 for Washington, and Figures 16 and 17 are for the combined states.

These graphs are used to determine the probit value (dependent variable). For example, Figure 8 is used to determine the probit. value for the number of days when the maximum temperature equals or exceeds selected temperatures at Idaho and northwest Montana. The mean monthly maximum temperature on the left ordinate is used as the indeperident variable to determine the probit value. For $32^{\circ} \mathrm{F}$. (number of days when the maximum temperature is less than $32^{\circ} \mathrm{F}$), the ordinate scale to the right is used. Having determined that probit value, Figure 18 is used to retransform the probit values to either the precent of days (left ordinate scale) or the approximate number of days (right ordinate scale). For example, in Figure 8, if the mean monthly maximum temperature was $90^{\circ} \mathrm{F}$ and it was desired to determine the mean number of days when the maximum temperature was $85^{\circ} \mathrm{F}$ or higher, proceed right from the left ordinate at $90^{\circ} \mathrm{F}$ until the line ${ }^{\prime} 85^{\prime}$ is intersected. From the point of intersection, proceed down until the value is found on the probit scale (abscissa). In this case, the value is 5.7. Enter 5.7 in Figure 18 on the abscissa and proceed upward until the curved line is intersected. The value for percent of month is 75 percent; for the number of days with a month having 30 days, it is 22.5 days.

Values for the number of days when the minimum temperature is below selected levels is similarly determined. For example, Figure 9 is used to find the probit value for Idaho and northwest Montana. The value is then entered in Figure 18 for the desired information.

The confidence interval for the estimate of a mean is calculated, in the case of the 95 percent confidence interval (C.l.), by:

$$
\begin{equation*}
\text { C.l. }=\bar{y}+b x \pm+.05 s^{s} y \cdot x \sqrt{\frac{1}{n}+\frac{x^{2}}{\Sigma x^{2}}} \tag{1}
\end{equation*}
$$

where the term $\bar{y}+b x$ is the estimated mean determined previously in the above example; $x=x-\bar{x}$ where \bar{x} is the mean and x is the observed independent variable (the observed mean maximum or mean minimum temperature); Σx^{2} is the corrected sum of squares for x from which the model was derived; s_{y} is the standard deviation of the estimate y and ${ }^{t}{ }_{.05}$ is student's ' + ' for $n-2$ degrees of freedom. These values have been tabulated for each model (See Tables 8 through 12). Equation (1) is used in the case where a value of mean femperature is derived from analysis of several years. In some cases, interest may be on a particular year's data. To determine the confidence interval for this, the following is used:

$$
\begin{equation*}
\text { C.1. }=\bar{y}+b x \pm+.05 s y \cdot x \sqrt{1+\frac{1}{n}+\frac{x^{2}}{\sum x^{2}}} \tag{2}
\end{equation*}
$$

For example, if the $90^{\circ} \mathrm{F}$ occurred this year, the estimated mean number of days determined earlier is 22.5 days (probit value of 5.7). From Table 8 for Idaho and northwest Montana, and for temperature level $85^{\circ} \mathrm{F},{ }_{.05}=1.998 ; \mathrm{s}_{\mathrm{y} \cdot \mathrm{x}}=.149 ; n=95 ; \bar{x}=77.6$ and $\Sigma x^{2}=5118.6$. Therefore, the 95 percent confidence interval is:

$$
\text { C.1. }=5.7 \pm 1.998(.149) \sqrt{1+\frac{1}{95}+\frac{(91-77.6)^{2}}{5118.6}}
$$

or between 5.4 and 6.0 probit value. This corresponds to between 19 and 25 days for a month with 30 days. Other state values are shown in Tables 9 through 12.

Examination of the regression coefficients (slope) of the models suggest they may be the same. Two slopes may be compared with the student's + with $n_{1}+n_{2}-4$ degrees of freedom. The test was conducted for threshold temperatures $65,70,75,80,85$, and 90 F only. The test is:

$$
\begin{equation*}
+=\frac{b_{1}-b_{2}}{\sqrt{s_{p}^{2}\left(\frac{1}{\Sigma x_{1}{ }^{2}}+\frac{1}{\Sigma x_{2}{ }^{2}}\right)}} \tag{4}
\end{equation*}
$$

where b_{1} and b_{2} are the regression coefficients for samples 1 and 2 respectively; $\Sigma x_{1}{ }^{2}$ and $\Sigma x_{2}{ }^{2}$ are the corrected sum of squares for the respective samples and $s_{p} 2$ is the pooled variance determined by:
$s_{p}^{2}=\frac{\left\{\Sigma y_{1}{ }^{2}-\left[\left(\Sigma x_{1}, y_{1}\right)^{2} / \Sigma x_{1}^{2}\right]\right\}+\left\{\Sigma y_{2}{ }^{2}-\left[\left(\Sigma x_{2} y_{2}\right)^{2} / \Sigma x_{2}^{2}\right]\right\}}{n_{1}-2+n_{2}-2}$

If t in equation (4) is less than the tabulated + with $n_{1}+n_{2}-$ 4 degrees of freedom at the .05 level of significance, it is concluded that the slope of the two lines are the same.

This test was conducted for the largest and smallest regression coefficient value for each model from 65 degrees to 90 degrees F. The statistical results show that the slopes between the largest and smallest value were significantly different and, hence, could not be considered to have the same slope. Consequently, for the samples used in this study, it is recommended that the slope for each individual model be retained in the prediction equation. One possible explanation for the surprising statistical difference is the small
range dealt with for the probit values, which range from about 3.5 , to 7.5 (see Figure 3).

V. COMPUTER ANALYSIS

Bliss (I) prepared a table of the relationship between percentages and probits. When plotted graphically, the relationship appears as in Figure 19. In the computer program, the curve in Figure 19 was divided. into three sections: (a) 1.0 to 29.0 percnet, (b) from greater than 29.0 percent to 70 percent, (c) from greater than 70.0 percent to less than or equal to 99.9 percent. A model was developed between percentages and probits for each section of the curve. For curve (a), a logarithmic model was developed,

$$
\begin{equation*}
Y=2.51573+.547465 \ln X \tag{6}
\end{equation*}
$$

where Y is the probit and X is the percentage. The coefficient of determination (R^{2}) was 98.61 percent which means that the data "explained" is . 9861 of the variation of the data around the model. For curve (b), a linear model gave the best fit:

$$
\begin{equation*}
Y=3.71121+.0257758 X \tag{7}
\end{equation*}
$$

R^{2} was .9998. For curve (c), the exponential models were attempted. The 4th polynomial yielded the best fit with $R^{2}=.9855$.

$$
\begin{equation*}
Y=1074.32-51.8832 x+.940684 X^{2}-.00755276 X^{3}+.0000226766 X^{4} \tag{8}
\end{equation*}
$$

Although relatively laborious to calculate by hand, computer-usage with these models posed no problem.

As indicated previously, all values of 0% or 100% of month were not included in the analysis of "the regression model.

Each card (one card per month) included the mean maximum, mean minimum and mean temperature and the number of days for each of the threshold temperatures.

VI. CONCLUDING REMARKS

The procedure developed in this study provides a convenient method for estimating the number of days in a month with temperatures above or below selected temperature thresholds. The only variable necessary is the mean monthly maximum or the mean minimum temperature.

The procedure can be used to develop models for states other than those included in this study. It is suggested, however, that the combined model developed in this study can be utilized for gross value estimation at other locations.

The regression coefficients from $65^{\circ} \mathrm{F}$ to $90^{\circ} \mathrm{F}$ are similar in magnitude, and in some cases, identical. However, analysis of the data show that the slopes (regression coefficients) cannot statistically be considered identical to each other.

VII. ACKNOWLEDGMENT

Suggestions and comments offered by the Scientific Services Division and Regional Climatologist, Western Region Headquarters, are appreciated.

VIII. REFERENCES

I. BLISS, C. I., "The Calculation of the Dosage-Mortality Curve", Annals of Applied Biology, Vol. 22, pp. 134-167, 1935.
2. FINNEY, D. J., Probit Analysis, A Statistical Treatment of the Sigmoid Response Curve, Second Edition, Cambridge a \dagger The University Press, p. 318, 1966.
3. STERNES, G. L.., Climatological Handbook, Columbia Basin States Temperature, Vol. 1, Part A, June 1969.
4. STERNES, G. L., Climatological Handbook, Columbia Basin States Temperature, Vol. T, Part B, July 1969.
5. Climatological Data - Nevada, Weather Bureau, U. S. Department of Commerce, 1941-1970.

FIGIRE 3. SAPIE PLOT OF MEAN TEPPERATURE VERSUS PROBIT TRANSFORMATION OF PERCENTAGES,

FIGURE 5. LOCATION OF STATIONS IN NEVADA USED TO DEVELOP REGRESSION MODEL.

FIGURE 6. LDCATION OF STATIONS IN OREGON USED TO DEVELOP REGRESSION MODEL.

FIGURE 7. LOCATION OF STATIONS IN WASHINGTON USED TO DEVELOP REGRESSION MODEL,

FIGURE 8., REGRESSIONU LIE RELATING:NEAN MONTHLY MAXIMMM TEPFEATUPE WITH PROBIT FOR IDAHO AND MORTHESTERN MONTANA.

TETPGRATURE WITH PROBIT FOR IDAHO AN IORTHWESTERN MONTANA

FIGURE 10. REGRESSION LINE RELATING MEAN MONTHLY MAXIMMM TEPERATIUE WITH PROBIT FOR NEVADA,

FIGURE 11, REGRESSION LINE RELATING MEAN MONTHLY MINIMUM TEMPERATURE WITH PROBIT FOR NEVADA.

FIGURE 12. REGRESSION LINE RELATING MEAN MONTTHLY MAXIMMM TEMPERATURE WITH PRCBIT FOR OREGON.

FIGLRE 14, REGRESSION LINE RELATING MEAN MONTHLY MAXIMUM TEPPERATURE WITH PROBIT FOR WASHINGTON.

FIGURE 13, REGRESSION LINE RELATING MEAN MOITHLY MINIIMM TEMPERATURE WITH PROBIT FOR OREGON.

FIGURE 15. REGRESSION LINE RELATING MEAN MORTHLY MIDIMM IEPERATUPE WITH PROBIT FOR WASHINGTON.

FIGURE 16. REGPESSION LINE RELATING MEAN MDNTHLY MAXIMUM TEPERATURE WITH PROBIT FOR ALL STAIES COMBINED.

FIGIIFE 17. REGRESSION LINE RELATING MEAN MONTHLY MINIMMM TEPEEATURE WITH PROBIT FOR ALL STATES COMBINED.

FIGURE 18. GRAPHICAL RELATIONSHIP BETWEEN PROBIT AND PERCENT DAYS OF MONTH AND NHMER OF DAYS.

FIGURE 19. REEATIONSHIP BETNEEN PERCENAGES AND PROBITS.

Table 1 . Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation explained by the Model (R^{2}). for Estimating the Number of Days above or below selected Temperatures in Idaho-Montana.

TEMPERATURE (F^{0})		INTERCEPT	REGRESSION COEFFICIENT	SAMPIE SIZE (Months)	R^{2}
MAX	65	-1.236	. 096	130	. 984
	70	-1.888	. 100	128	. 984
	75	-2.777	. 106	128	. 984
	80	-3.512	. 109	115	. 986
	85	-4.131	.109	95	. 988
	90	-4.295	. 103	75	.903
	95	-4.013	. 091	46	. 812
	100	-0.101	. 039	15	. 300
	321*	8.024	-. 098	93	. 951
MIN	32	8.692	-. 118	180	. 951
	20	6.842	-. 104	128	. 958
	10	5.928	-. 097	96	. 962
	0	5.084	-. 081	80	. 889

[^0]Table 2 . Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Fercent of Variation explained by the Kodel $\left(R^{2}\right)$ for Estimating the Number of Days above or below selected Temperatures in Nevada.

*number of days max temperature was. $32^{\circ} \mathrm{F}$ or less

Table 3 . Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation explained by the Model (R^{2}). for Estimating the Number of Days above or below selected Temperatures in Oregon.

*number of days max temperature was $32^{\circ} \mathrm{F}$ or less

Table 4 . Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation explained by the Model (R^{2}) for Estimating the Number of Days above or below selected Temperatures in Washington.

TEMPERATURE (F°)		INTERCEPT	REGRESSION COEFFICIENT	SAMPIE SIZZ: (Months)	R^{2}
MAX	65	- 2.093	. 109	111	. 941
	70	- 2.491	. 107	105	. 964
	75	- 3.184	. 109	102	. 962
	80	- 3.553	. 108	89	. 962
	85	- 3.816	. 104	72	. 941
	90	- 4.116	. 102	50	. 925
	95	- 4.419	. 098	28	. 925
	100	-11.507	. 172	11	. 867
	321*	8.325	-. 109	47	. 889
MIN	32	8.995	-. 127	127	. 949
	20	6.819	-. 104	65	. 935
	10	6.106	-. 103	41	. 828
	0	5.199	-. 080	23	. 669

*number of days max temperature was $32^{\circ} \mathrm{F}$ or less

Table 5: Summary of Intercept and Regression Coefficients of Probit Transformation for Linear Model, Sample Size and Percent of Variation explained by the Model. (R^{2}). for Estimating the Number of Days above or below selected Temperatures for Combined States.

TEMPERATURE (F°)		INIERCEPT	REGRESSION COEFFICIENT	SAMPLE SIZE (Months)	R^{2}
MAX	65	-1.704 :	. 103	356	.958
	70	-2.319	. 105	345	.962
	75	-3.036	. 109	328	. 964
	80	-3.495	. 108	294	. 968
	85	-3.880	. 106	236	. 956
	90	-4.505	. 106	225	$\text { . } 910$
	95	-6.153	. 118	160	$.903$
	100	-7.415	. 124	79	. 821
	321*	7.859	-. 095	216	. 884
MIN					\therefore
	32	8.749	-. 120	508	. 951
	20	6.891	-. 106	256	. 956
	10	5.938	-. 097	75	. 939
	0	5.011	- -. 077	$149 \ldots$. 806

[^1]Table 6. Independent Data Sites in Five States for Testing Prediction Models.

State	SIte	LATITUDE (NORTH)	$\begin{gathered} \text { LONGITUDE } \\ (\mathrm{WESI}) \end{gathered}$	$\underset{(F E E T)}{\text { ETEVATION }}$	$\begin{aligned} & \text { NO. YEARS } \\ & \text { RECORD } \end{aligned}$
IDAHO	Ashton 1S	$44^{\circ} 04^{\prime}$	$111^{\circ} 271$	5220	35
	Avery RS	$47^{\circ} 15^{\prime}$	$115^{\circ} 48{ }^{\prime}$	2492	35
	Grace	$42^{\circ} 35^{\prime}$	$111^{\circ} 44^{\prime}$	5400	35
	Hailey RS	$43^{\circ} 31^{\prime}$	$114^{\circ} 191$	5328	35
	Idaho Falls AP	$43^{\circ} 31^{\prime \prime}$	$112^{\circ} 04^{\prime}$	4730	35
	Oakley	$42^{\circ} 15^{\prime}$,	$113^{\circ} 5^{\prime}$	4191	35
	Sandpoint ES	$48^{\circ} 17^{\prime}$	$216^{\circ} 34^{\prime}$	2100	35
MONTANA	Missoula	$46^{\circ} 531$	$114^{\circ} 021$	3172	35
NEVADA	Battle Mountain	$40^{\circ} 391$	$116^{\circ} 561$	4513	30
	Carson City	$39^{\circ} 09^{\prime}$	$119^{\circ} 46^{\prime}$	4651	30
	Desert WL Range	$36^{\circ} 26$	$115^{\circ} 22^{\prime}$	2920	30
	Fallon	$39^{\circ} 27^{\prime}$	$118^{\circ} 47^{\prime}$	3965	30
	Lamoille	$40^{\circ} 411$	$115^{\circ} 28$!	6290	30
	Lovelock	$40^{\circ} 11^{\prime}$	$118^{\circ} 29^{\prime}$	3977	30
	Mina	$38^{\circ} 23^{\prime}$	$118^{\circ} .061$	4552	30
	Orovada	$41^{\circ} 34^{\prime}$	$117^{\circ} 47^{\prime}$	4310	30
	Pioche	$37^{\circ} 56^{\prime}$	$114^{\circ} 27^{\prime}$	6120	30
OREGON	Forest Grove	$45^{\circ} 32^{\prime}$	$123^{\circ} 06^{\prime}$	175	35
	Grants Pass	$42^{\circ} 26^{\prime}$	$123^{\circ} 191$	925	35
	Heppner	$45^{\circ} 21$.	$119^{\circ} 331$	1950	35
	Madras 2N	$44^{\circ} 40$	$121^{\circ} 0{ }^{\prime}$	2500	35
	Moro ES	$45^{\circ} 29^{\prime}$	$120^{\circ} 43^{\prime}$	1858	35
	Parkdale	$45^{\circ} 35^{\prime}$	$121^{\circ} 30^{\prime}$	1740	35
	Pendleton	$45^{\circ} 41$ '	118° 51'	1489	35
	Prineville $2 N W$	$44^{\circ} 19$!	$120^{\circ} 52 \cdot$	2868	35
	Prospect 2SW	$42^{\circ} 44^{\prime}$	$122^{\circ} .31^{\prime}$	2482	35
	Union	$45^{\circ} 13^{\prime}$	117°. 5^{\prime}	2765	35
	Warm Springs R	$43^{\circ} 35^{\prime}$	$118^{\circ} 13^{\prime}$	3352	35
WASHINGTON	Concrete	$48^{\circ} 32^{\prime}$	$121^{\circ} 45^{\prime}$	270	35
	Goldendale	$45^{\circ} 49^{\prime}$	$120^{\circ} 50^{\prime}$	1635	35
	Kosmos	$46^{\circ} 30^{\prime \prime}$	$122^{\circ} 39^{\prime}$	775	33
	Landsburg	$47^{\circ} 23^{\prime}$	$121^{\circ} 58^{\prime}$	535	32
	Palmer 3SE	$47^{\circ} 18^{\prime}$	$121^{\circ} 50^{\prime}$	895	35
	Rainier Longmire	$46^{\circ} 45^{\prime}$	$121^{\circ} 49$,	2762	27
	Snoqualmie Falls	$47^{\circ} 33^{\prime}$	$121^{\circ} 51^{\prime}$	440	35
	Vancouver	$45^{\circ} 38^{\prime}$	$122^{\circ} 41$!	100	35
	Walla Walla 3W	$46^{\circ} 03!$	$118^{\circ} 24$	800	32
	Wenatchee	$47^{\circ} 25^{\prime}$	$120^{\circ} 19{ }^{\prime}$	634	35
	Wilbur	$47^{\circ} 45^{\prime}$	$118^{\circ} 42{ }^{\prime}$	2163	35
	Wind River	$45^{\circ} 48^{\prime}$	$121^{\circ} 56^{\prime}$	1145	35
	Winthrop IWSW	$48^{\circ} 28^{\prime}$	$120^{\circ} \mathrm{Il}$ '	1755	36

Table 7. Correlation Coefficient (R) and Sample Size (Months) of Observed Versus Computed Percent Days Above or Below Selected Temperatures on Independent Samples for Combined Model and Individual State Model.

TEMPERATURE	COMBINED STATES		IDAHO-MONTANA		OREGON		NEVADA		WASHINGION	
	R	MONTHS								
MAX										
65	. 984	236	. 989	54	. 992	83	--	--	. 978	99
70	. 988 "	235	.986	- 56	. 993	85	--	--	. 985	94
75	. 988	225	.986	. 54	- 9.94	80	--	--	. 987	91
80	. 963	20	. 988	40	. 937	78	--	--	. 982	86
85	. 959	162 -	. 981	34	. 990	. 62	--	--	. 923	66
90	.954.	177	.947	23	. 973	53	. 955	50	. 953	51
95	. 856	70	.790	12	. 892	34	--	--	. 952	24
100	. 712	26	--	2	. 742	15	--	--	$.787$	9
32	-902	46	.948	40	. 892	32	. 694	30	. 915	44
MIN										
32	. 961	363	.945	74	. 977	103	. 969	89	. 967	97
20	. 940	170	. 910	53	. 955	62	--	--	. 940	55
10	. 882	103	. 845	39	. 842	34	--	--	. 829	30
0	. 765	85	.787	35	. 626	19	. 469	17	. 882	14

Table 8. Variables for 95 Percent Confidence Interval ted Value (Probit Transformation of the Percent of Days Above or Eelow Selected Temperatures) from Individual Monthly Mean Maximum or Mean Minimum Temperatures for Idaho-Montana.

TEMP	RATURE	$\begin{aligned} & { }^{t} .05 \\ & (n-2 d f) \end{aligned}$	STANDARD DEviAIION	$\left(s_{y \cdot x}\right)$	$\begin{aligned} & \text { SAMPLEE } \\ & \text { SIZE }(\mathrm{n}) \end{aligned}$	$\frac{\text { MEAN }}{(\bar{x})}$	
MAX	65	1.980	.139		130	66.4	16358.5
	70	1.980	. 131		128	70.9	12958.8
	75	1.980	. 141		128	72.6	12426.2
	80	1.981	. 120		115	74.9	9265.7
	85	1.998	. 149		95	77.6	5118.6
	90	1.996	. 213		75	80.1	2829.9
	95	2.016	. 202		46	83.6	932.5
	100	2.160	. 207		15	87.8	155.4
	32	1.990	. 138		93	38.3	3409.3
MIN	32	1.980	. 261		180	29.1	16662.3
	20	1.980	. 168		128	21.3	7431.9
	10	1.989	. 119		96	18.2	3544.3
	0	1.994	. 159		80	16.7	2395.7
a/ 95% C.I. $=\bar{y}+b x \pm t .05 s_{y x} \sqrt{1+\frac{1}{n}+\frac{x^{2}}{\sum x^{2}}}$ where $x=x-\bar{x} ; \bar{x}$ is the mean and X the observed data. * Corrected sum of squares							

Table 9 Variabies a/
Pre 95 Percent (Probjit Transformation of the Percent of Days Above or Below Selected Temperatures) from Indiviaual Monthly Mean Maximum or Mean Minimum Temperatures for Nevada.

TEMPERATURE		$\left.{ }_{\left(n-\frac{1}{2}\right.}^{t} \mathrm{df}\right)$	STANDARD DEVIATION	$\left(s_{y}, x\right)$	SAMPIE SIZE. (n)	$\frac{\mathrm{MEAN}}{(\overline{\mathrm{x}})}$	$\Sigma_{x}{ }^{2 *}$
MAX	90	2.016	. 245		44	85.4	2210.5
	95	2.011	. 181		51	90.9	2795.2
	100	2.036	. 283		39	94.5	1365.2
	32	2.037	. 191		34	44.8	925.7
MIN	32	1.992	. 263		83	30.4	8873.4
	0	2.080	. 202		23	17.4	356.5

a/ 95% C.I. $=\bar{y}+b x \pm t_{05} s_{y x x} \sqrt{1+\frac{1}{n}+\frac{x^{2}}{\sum x^{2}}}$ where $x=x-\bar{x} ; \bar{x}$ is the mean
and x the observed data.

* Corrected sum of squares

Table 10 . Variables for 95 Percent Confidence Interval on the Predicted Value (Probit Transformation of the Percent of Days Above or Below Selected Temperatures) from Individual Monthly Mean Maximum or Mean Minimum Temperatures for Oregon.

TEMPERATURE		$\begin{aligned} & \left.t^{n-25} d f\right) \end{aligned}$	STANDARD DEVIATIO	$\left(s_{y, x}\right)$	$\begin{aligned} & \text { SAMPLE } \\ & \text { SIZE (n) } \end{aligned}$	$\frac{M E A N}{(\bar{x})}$	$\Sigma \mathrm{x}^{2}{ }^{\text {* }}$
MAX	65	1.982	. 234		115	64.2	11770.3
	70	1.983	. 251		112	68.2	11474.2
	75	1.988	. 214		98	71.9	8433.3
	80	1.991	. 184		90	73.1	6839.1
	85	1.998	. 145		69	76.3	3771.5
	90	2.004	. 204		56	78.5	2197.9
	95	2.031	. 281		35	82.2	2875.5
	100	2.179	. 197		14	84.9	284.1
	32	2.020	. 221		42	42.8	883.8
MIN	32	1.981	. 238		118	32.4	7845.0
	20	1.999	. 164		63	26.5	2330.6
	10	2.025	. 169		38	22.6	782.1
	0	2.080	. 197		23	20.0	302.3

a/ 95% C.I. $=\bar{y}+b x \pm t .05 s y \sqrt{1+\frac{1}{n}+\frac{x^{2}}{\sum x^{2}}}$ where $x=x-\bar{x} ; \bar{x}$ is the mean
and X the observed data. * Corrected sum of squares.

Table 11. Variables for 95 Percent Confidence Interval on the Predicted Value (Probit Transformation of the Percent of Days Above or Below Selected Temperatures) from Individual Monthly Mean Naximum or Mean Mininum Temperatures for Washington.

Mable 12. Variables for 95 Percont Confidence Interval Variables for 95 Percent Confidence Interval on the Predicted Value (Probit Transformation of the Percent of Days Above or Below Selected Temperatures) from Individual Monthly Mean Maximum or Mean Minimum Temperatures for Combined States.

TEMPERATURE		$\begin{gathered} t .05 \\ (n-2 d f) \end{gathered}$	STANDARD DEVIATIO	$\begin{aligned} & \text { SAMPLE } \\ & \text { SIZE (} \mathrm{n} \text {) } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & (\bar{x}) \end{aligned}$	$\Sigma \mathrm{x}^{2}{ }^{*}$
MAX	65	1.960	. 223	356	65.6	38470.2
	70	1.960	. 202	345	69.2	33085.4
	75	1.960	. 195	328	71.8	29063.5
	80	1.960	.170	294	73.6	22086.3
	85	1.960	. 167	236	73.4	12866.9
	90	1.960	. 233	225	80.2	10689.9
	95	1.970	. 268	160	85.3	7545.6
	100	1.993	. 368	79	90.6	3097.4
	32	1.960	. 205	216	40.6	7595.5
MIN	32	1.960	. 252	508	31.1	42016.4
	20	1.960	. 164	256	24.1	13509.9
	10	1.960	.147	175	20.5	6110.7
	0	1.970	. 193	249	18.1	3805.8
$\begin{aligned} & \text { a/ } 95 \% \text { C.I. }=\bar{y}+b x \pm t .05 \\ & \text { and } X \text { the observed data. } \\ & \text { * Corrected sum of squares } \end{aligned}$						

Western Region Technical Memoranda: (Continued)
No. $45 / 2$ Precipitation Probabilities in the Western Region Associated with Spring 500-mb Map Types. Richard P. Augulis, January 1970. (PB-189434)
No. 45/3 Precipitation Probabilities in the Western Region Associated with Summer 500-mb Map Types. Richard P: Augulis, January 1970. (PB-|89414)
No. 45/4 Precipitation Probabilities in the Western Region Associated with Fall 500-mb Map Types. Richard P. Augulis; January 1970. (PB-|89435)
No. 46 Applications of the Net Radiometer to Short-Range Fog and Stratus Forecasting at Eugene, Oregon. L. Yee and E. Bates, December 1969. (PB-190476)
No. 47 . Statistical Analysis as a Flood Routing Tool. Robert J. C. Burnash, December 1969. (PB-188744)
No. 48 Tsunami. Richard A. Augulis, February 1970. (PB-190157)
No. 49 Predicting Precipitation Type. Robert'J. C. Burnash and Floyd E. Hug, March 1970. (PB-190962)
No. 50 Statistical Report on Aeroallergens (Pollens and Molds) Fort Huachuca, Arizona, 1969. Wayne S. Johnson, April 1970. (PB-191743)
No. 51 Western Region Sea State and Surf Forecaster's Manual. Gordon C. Shields and Gerald B. Burdwell, July 1970. (PB-193102)
No. 52 Sacramento Weather Radar. Climatology. R. G. Pappas and C. M. Veliquette, July 1970. (PB-193347)
No. 53 Experimental Air Quality Forecasts in the Sacramento Valley. Norman S. Benes, August 1970. (PB-194128)
No. 54 A Refinement of the Vorticity Field to Dellneate Areas of Significant Precipitation. Barry B. Aronovitch, August 1970.
No. 55 Application of the SSARR Model to a Basin Without Discharge Record. Vail Schermerhorn and Donald W. Kuehl, August 1970. (PB-194394)
No. 56 Areal Coverage of Precipitation in Northwestern Utah. Philip Williams, Jr., and Werner J. Heck, September 1970. (PB-194389)

No. 57 Preliminary Report on Agricultural Field Burning vs. Atmosphere Visibility in the Willamette Valley of Oregon. Earl M. Bates and David O. Chilcote, September 1970. (PB-194710)
No. 58 Air Pollution by Jet Aircraft at Seattle-Tacoma Airport. Wallace R. Donaldson, October 1970. (COM-71-00017)

No. 59 Application of P.E. Model Forecast Parameters to Local-Area Forecasting. Leonard W. Snellman, October 1970. (COM-71-00016)

NOAA Technical Memoranda NWS

No. 60 An Aid for Forecasting the Minimum Temperature at Medford, Oregon. Arthur W. Fritz, October 1970. (COM-71-00120)
No. 61 Relationship of Wind Velocity and Stability to SO_{2} Concentrations at Salt Lake City, Utah. Werner J. Heck, January 1971. (COM-71-00232)
No. 62 Forecasting the Catalina Eddy. Arthur L. Eichelberger, February 1971. (COM-71-00223)
No. 63 700-mb Warm Air Advection as a Forecasting Tool for Montana and Northern Idaho. Norris E. Woerner, February 1971. (COM-71-00349)
No. 64 Wind and Weather Regimes at Great Falls, Montana. Warren B. Price, March 1971.
No. 65 Climate of Sacramento, California. Wilbur E. Figgins, June 1971. (COM-71-00764)
No. 66 A Preliminary Report on Correlation of ARTCC Radar Echoes and Precipitation. Wilbur K. Hall, June 1971. (COM-71-00829)
No. 67 Precipitation Detection Probabilities by Los Angeles ARTC Radars. Dennis E. Ronne, July 1971. (COM-71-00925)

No. 68 A Survey of Marine Weather Requirements. Herbert P. Benner, July 1971. (COM-71-00889)
No. 69 National Weather Service Support to Soaring Activities. Ellis Burton, August 1971. (COM-71-00956)
No. 70 Predicting Inversion Depths and Temperature Influences in the Helena Valley. David E. Olsen, October 1971. (COM-71-01037)
No. 71 Western Region Synoptic Analysis-Problems and Methods. Philip Williams, Jr., February 1972. (COM-72-10433)

No. 72 A Paradox Principle in the Prediction of Precipitation Type. Thomas J. Weitz, February 1972. (COM-72-10432)

No. 73 A Synoptic Climatology for Snowstorms in Northwestern Nevada. Bert L. Nelson, Paul M. Fransioli, and Clarence M. Sakamoto, February 1972. (COM-72-10338)
No. 74 Thunderstorms and Hail Days Probabilities in Nevada. Clarence M. Sakamoto, April 1972. (COM-72-10554)
No. 75 A Study of the Low Level Jet Stream of the San Joaquin Valley. Ronald A. Willis and Philip Williams, Jr., May 1972. (COM-72-10707)
No. 76 Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Doriald M. Gales, July 1972. (COM-72-1|140)
No. 77 A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., July 1972. (COM-72-1|136)
No. 78 Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Vectors.
No. 79 Earl T. Riddiough, July 1972. (COM-72-11146)
No. 79 Climate of Stockton, California. Robert C. Nelson, July 1972. (COM-72-10920)

[^0]: *number of days max temperature was $32^{\circ} \mathrm{F}$ or less

[^1]: *number of days max temperature was $32^{\circ} \mathrm{F}$ or less

